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In this paper I formalize the notion of minimal disturbance, as this seems to be re- 
quired by usual interpretations of the theory of quantum mechanics, and construct a 
quantum logical (lattice) model of the type of situation that seems to be at the root of the 

problem of the interpretation of Luders' projection rule as a criterion of minimal distur- 
bance for individual state transformations. What is particularly interesting in the situation 
to be depicted here is that, on the basis of a simple model, which depends only on some 

very general features of the lattice structure of the theory (and its semantical interpreta- 
tion), usual interpretive assumptions on minimal disturbance appear to be wanting. 

If we restrict our attention to the statistics of measurement results, Luders' rule can 

easily be interpreted as a formula describing 'minimal change' for statistical states. Suc- 

cinctly, this is so because Luders' rule is a version of the conditional expectation in Hilbert 
spaces and conditional expectation is the best estimator of the final state given the result of 
measurement. More concretely, as Herbut has shown in (1969). Luders' rule follows as 
a mathematical result if we restrict ourselves to preparatory measurements which are 
minimally disturbing in the metric of the operator Hilbert space representing the systems 
being measured.1 

But this derivation of Luders' rule cannot be extended to justify the interpretation of 
the rule as a description of individual state transformations, since this presupposes the in- 
terpretation of the Hilbert space metric as a suitable relation of 'nearness' or 
'approximation' for individual state transformations, an interpretation for which there does 
not seem to be any other ground than that it is suggested by the statistical structure. For 
example, Friedman and Putnam (1978) claim that in Quantum Logic one can derive 
Luders' rule without additional assumptions, something they consider to be an advantage 
of Quantum Logic over usual interpretations. But to the extent that quantum logic 
considers the statistical structure as directly reflecting the structure of individual systems 
(events), Luders' rule is simply assumed in the process. That is because this statistical 
structure includes the Hilbert space metric, and minimal disturbance in that metric is 
equivalent to the choice of the sasaki conditional (see Hardegree (1976) and Hellman 
(1981)). Quantum logic, as other individual state interpretations I have surveyed 
elsewhere (in 1987), cannot claim any advantage from the possibility of deriving Luders' 
rule in quantum logic. This derivation is just a lattice theoreticalformulation of a 
mathematical theorem which is available to all interpretations. 
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But what about more positive characterizations of minimal disturbance? That is, could 
we not try to characterize a concept of minimal disturbance independently of Luders rule 

and then show that measurement transformations satisfying this criterion are described by 
Luders rule? I show next that the most natural way of attempting to make precise this idea 
flounders, and as it seems, without hope of repair. 

Since we are interested in Luders' rule as a state transformation rule we proceed to 
formulate a criterion of minimal disturbance in terms of the (individual) states of the sys- 
tems in question. In a first approximation, minimally disturbing measurements should 

satisfy the condition that there is no other measurement of the same magnitude and with 
the same result preserving "more" of the original state of the system. Let us call this 

rough criterion the natural criterion of minimal disturbance. It seems reasonable to take 
this criterion, at least whenever it is unambiguous, as a necessary condition for a physi- 
cally meaningful concept of minimal disturbance for individual state transformations. 

I will make this idea of minimal disturbance precise within an algebraic (quantum 
logical) framework representing the so-called "propositional structure" of the theory (the 
Von Neumann-Birkhoff approach to the foundations of mechanics). In the quantum logi- 
cal framework a physical system is represented by a complete atomic orthomodular lattice 

(of propositions) with the covering property.2 We shall call a lattice with these properties 
a quantum lattice. Classical systems are represented by distributive lattices whereas non- 
classical quantum systems are represented by non-distributive quantum lattices. The con- 
nection with quantum mechanics is established through the isomorphism between the lat- 
tice of propositions and the lattice of closed subspaces of the Hilbert space representing 
the system. The magnitudes of the system are identified with the Boolean sublattices of 
the quantum lattice. The discussion below does not depend on the subtleties of the math- 
ematical construction process leading to the quantum lattice structure. Details can be found 
in any treatise on Quantum Logic (for example in Beltrametti and Cassinelli 1981). 

According to the usual interpretation of the state vector for individual systems the sys- 
tem 'has' the 'properties' (corresponding to propositions) to which the state vector assigns 
probability one. Individual states then, as usually interpreted, are represented by maximal 
filters in the lattice. By assumption of completeness, states can be identified with the class 
of principal ultrafilters i.e. with filters generated by atoms of the quantum lattice repre- 
senting the system. Since, in usual interpretations, every state is uniquely determined by 
an atom, and vice versa every atom generates a unique state, I will often talk of atoms as 
'states'. This harmless ambiguity will simplify notation. The principal filter generated by 
x is denoted by [x). A measurement state transformation will be represented as a func- 
tion of two variables: T(a,r) = b, where a is (the atom generating the) initial state, r the 
proposition representing the result of measurement and b is (the atom generating) the final 
state. 

Given a classical system S in initial state [a), suppose we measure a magnitude M 
(including r) and find r as the (proposition representing the) result of measurement. 
Now, an ideal or 'minimally disturbing' state transformation is one that 'least disturbs' the 
original state of the system. But there is no intrinsic way (intrinsic to the lattice structure 
and thus, we assume, intrinsic to the theory) of characterizing this idea beyond the fol- 
lowing restriction: if r e [a) then the final state is the same initial state, and if r e [a) 
then all atoms 'below' r (i.e. all atoms x such that x < r ) generate a state transformation 
that at least in principle could be brought about by the measurement. As an example look 
at lattice B8 in Fig. 1. Let r = b v c, clearly TI(a,r) = c and T2(a,r) = b cannot be 
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In the case of (non-classical) quantum systems (represented by non-Boolean quantum 
lattices) the condition that r E [a) also implies that all atoms 'below' r generate a state 
transformation which is a possible description of measurement. Here, however, Luders' 
rule provides an additional criterion that allow us to select one state from among these 
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Figure 1. Hasse diagram of an 8-element Boolean lattice 

possible final states. Luders' rule, in the algebraic (lattice) framework takes the following 
form: L(a,x) = x A (a v xl), where a is the initial state and x is the result of measure- 
ment (see Appendix), Luders' rule singles out a unique state transformation since L(a,x) 
is an atom of the lattice (see theorem A3 in the Appendix). So, for example, in the lattice 

depicted in Fig. 2, if the initial state is a and the result of an autonomous non-maximal 
measurement of magnitude (d, dl) is dl, then according to Luders' rule the final state is 

T(a,dl) = e. But now, how can Luders' rule be characterized as a criterion of minimal 
disturbance for states?. 

al 

Figure 2. Partial Hasse diagram of a quantum lattice 2) 

Figure 2. Partial Hasse diagram of a quantum lattice (L12) 

Consider the following example. Lattice D in Fig. 3 is a sublattice of L(H3) (This 
quantum lattice isomorphic to the lattice of propositions of a 3-dimensional Hilbert space). 
Suppose the initial state is [a) and the result of measurement is fl. Acceptable state 
transformations in D are Tl(a,fl) = e and T2(a,fL) = g. Notice however that cl E [e) 
whereas cl e [g). The natural criterion of minimal disturbance (restricted to D) forces us 
to conclude that Tl(a,fl) = e is minimally disturbing. But e is not the final state given 
by Luders rule. As a matter of fact in this case Luders' rule does not select a unique final 
state. It does not distinguishes between Tl(a,f-) = e and T2(a,f-) = g. Now, the lat- 
tice D of our example (Dilworth's lattice) is not a quantum lattice. In fact this lattice is a 
well known example of an orthomodular lattice which is not a quantum lattice because (as 
it is easy to check) it does not satisfy the covering property. Thus, in D, all axioms except 
the covering property are satisfied, but nonetheless minimal disturbance selects a unique 
state, Luders' rule does not. On the other hand (see theorem A3 in Appendix), for com- 
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plete atomic orthomodular lattices (like D), the validity of the covering property is equiva- 
lent to the assumption that Luders' rule selects a unique final state. The example above 
can be understood, then, as a counterexample to the most natural way of reconstructing (in 

quantum logic) the main claim of usual interpretations concerning minimal disturbance. 

Implicit in usual interpretations is the claim that the set of 'ideal' measurement transforma- 
tions to which Luders' rule applies is a physically distinguishable set of transformations 

(via minimal disturbance). That is, it is assumed that there is a physical criterion, which 
can be formulated in terms of minimal disturbance, that allows us to characterize the 
transformations theoretically singled out by Luders' rule. But if we assume the covering 
property Luders' rule follows as a mathematical result, and if we do not, minimal distur- 
bance does not coincide with Luders' rule. The existence of the physical criterion for 
individual state transformations as assumed by usual interpretations is therefore very 
questionable. 
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One could argue that the relation between minimal disturbance and Luders rule is not 
as straightforward as I have depicted above. One could argue, that is, that the relation 
between minimal disturbance and Luders rule' is more indirect, in a way which is not 

captured by the above modelling of the situation. But short of defining minimal 
disturbance in terms of Luders' rule it seems there is not much one could add (at least to 
the extent that the quantum logical axiomatization faithfully reproduces the structure of the 

theory). To argue that minimal disturbance is, as in the case of classical mechanics, a 

non-(lattice) theoretical criterion would seem to sever in principle the desired connection 
with Luders' projection rule and force us to recognize some sort of hidden variable 
account of the statistical structure of the theory. 

Taking the situation exemplified above in terms of the lattice D as the point of depar- 
ture there is another argument that can be brought against the usual assumed connection 
between minimal disturbance and Luders' rule. As we shall see, the natural criterion of 
minimal disturbance overdetermines the final state (in a sense to be made precise below). 

It is possible to find sets of propositions, say C and D, with C : D (and C and D 

contributing "equally as much" to the original state) such that, for initial state [a), pre- 
serving C is sufficient to determine a final state and preserving D is also sufficient to de- 
termine another final state. Let L(H3) be a (three dimensional) quantum lattice, and let a, 
an atom of L, represent an initial state. Suppose we measure non-maximal magnitude 

{f,fl}. There are different sublattices Di of L(H3) isomorphic to Dilworth's lattice D 

(Fig. 3), which can be 'interpolated' for initial state a and non-maximal magnitude 

{f,fl}. To see this take a basis {a1} such that a = al, and such that a rotation around 

a3 gives a new basis {b } such that bl = a3 and b3 I f. In general there will be 
different ways in which this can be done. Each of these different 'interpolations' of a 
lattice D provides us sufficient information on the measurement to select a unique final 
state according to the criterion of minimal disturbance. 
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leading thus to contradictory conclusions concerning the final state. This is a challenge to 
the privileged status assigned to Luders' rule as a criterion of minimal disturbance. One 
has to wonder at this juncture how one could possibly justify the selection of Luders' rule 

among all possible rules obtained as above.4 

One could argue that the criterion of minimal disturbance should be applied in L(H3) 
to "all relevant information", But what would this "relevant" information be? The imme- 
diate answer, that "relevant information" is information corresponding to propositions 
generated by compatible magnitudes does not work. The notion of "all relevant informa- 
tion" has a clear meaning only for statistical transformations. Simply to require minimal 
disturbance is not enough to select a unique state transformation according to Luders' rule. 
One has to qualify which (sort of) propositions are to be minimally disturbed, that is, what 
is the relevant information, and here the problem of justifying Luders' rule as a description 
of individual physical processes would start anew. 

Appendix: Lattice Formulation of Luders' Rule. 

The fundamental algorithm of Quantum Mechanics states that a measurement of the 
quantity A in a system represented by Hilbert space H in the state Q gives the result a 
with probability Pro(a ) = tr(QP ). Where P, Q are projections in H. In the Hilbert 
space formulation of Quantum Mechanics Luders rule states that after an (ideal) measure- 
ment with result represented by P, the state of the system is given by 

PQP = (trQP)P 

Let E1(PQP) denote the support of the projection PQP, that is Ei(PQP) is the ortho- 

complement of the null space of PQP: {x E H: PQPx = 0 } = Eo(PQP) 

Al Theorem: For all projections P,Q in H 

Eo(PQP) = P1 v (P A QI) 

For the proof see Hardegree (1976). 

A2 Corollary: Eol(PQP) = Ei(PQP) = PA (pl v Q) 

In our abstract lattice theoretical (quantum logical) framework then, for q an atom of the 
lattice and p an arbitrary element, the transformation L(q,p) = p A (pL v q) represents 
Luders' transformation. 

A3 Theorem: Let L be a complete orthomodular atomic lattice, The following two condi- 
tions are equivalent: 

(i) The covering property holds 

(ii) Luders rule selects a unique final state 
(for any atom p and lattice element q, q ? 0) 

See Piron (1976) for a proof of this theorem. In my dissertation and in (1988) I provide 
a different proof that allows for a physical interpretation of the covering property 
independently of Luders' rule. 
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Notes 

1I have shown that all derivations of Luders' rule in the literature that are known to me 
are, as statistical derivations, variants of Herbut's derivation in a sense that I made precise 
elsewhere (in 1987). Herbut's derivation can be seen in turn as a converse to Luders' 
theorem in Luders (1951). 

2We say that a covers b (notation: a > b) if a > b and for no x 
a > x > b. A lattice (with 0) has the covering property if a A x = 0 implies x <* x v a 
for any atom a and element x. 

3This idea can be made precise by appealing to the fact that the equivalence classes 

generated by both state transformations (via the embedding theorem) are isomorphic. 

4One could argue similarly to Hellman to show some of the difficulties in justifying 
Luders' rule among the different rules satisfying the natural criterion of minimal distur- 
bance as presented above. See also Teller. 
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